New and Underused Vaccines, Rotavirus

George Armah
Noguchi Memorial Institute for Medical research
University of Ghana

10th Annual African Vaccinology Course (VACFA)
Cape town, South Africa
10th to 14th November, 2014
Outline

- Burden of Rotavirus Disease
- Rotavirus vaccine Paradigm
- Vaccines in Use
- New vaccines in Development
- Rotavirus vaccine Pipeline

Tate JE, Burton AH, Boscho-Pinto C et al. Lancet Infect Dis 2010
Rotavirus is the most common cause of diarrhoeal death in young children

Global rotavirus surveillance: 39-40% of diarrhoeal hospitalizations

10 countries account for ~85% of rotavirus associated mortality

Tate JE, Burton AH, Boscho-Pinto C et al. Lancet Infect Dis 2010
Rotavirus epidemiology and burden in Africa

- ~39% of children hospitalized with acute diarrhoea were excreting rotaviruses

- Rotavirus occurred in:
 - 36% of infants <6 months of age
 - 75% of infants <12 months of age
 - 83% of children <18 months of age
 - Peak Infection in 6-18 months old

- Rotavirus infection occurs commonly in children in the community

Rotavirus Morphology and Major Viral Antigens

- VP7
 - Neutralization Antibodies
 - Glycoprotein [G]

- VP4
 - Neutralization Antibodies
 - Virulence
 - Cellular Attachment
 - Protease Sens. [P]
Rotavirus Vaccine Paradigms

Human monovalent vaccines
- Natural infection offers protection
- High replication in the host - attenuated by TC passage
- Broad immunity is acquired through various immune effector mechanisms
- Heterotypic protection is gained through broad immune response

Animal reassortant vaccines
- Naturally attenuated strains in humans – lower replication
- Higher titres required
- Expectation that neutralizing antibody in the gut lumen is required
- Reassortant vaccine constructs to include the common human rotavirus antigens
Rotavirus Vaccine Paradigms

- Clinical immunity after neonatal rotavirus infection
- Primary infection usually symptomatic and protects against severe re-infection
- VP7 elicits production of neutralizing antibodies in host
- Animal viruses are often naturally attenuated in humans
- Evidence that protection against rotavirus diarrhea after natural infection is not dependent on serotype-specific neutralizing antibody
- Vaccines developed based on classical “Jennerian” approach
- Heterotypic vs homotypic immunity basis of different approaches to vaccine candidates
- Mucosal immunity is believed to be important in protection
Consequences of this Rotavirus Vaccine Paradigm

<table>
<thead>
<tr>
<th>RotaTeq™, Merck</th>
<th>Rotarix™, GSK Bio</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>G1P[8]</td>
</tr>
<tr>
<td>G2</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td></td>
</tr>
<tr>
<td>P[5]</td>
<td></td>
</tr>
</tbody>
</table>

Five bovine-human rotavirus strains

GSK Rotarix™
Human, monovalent, oral Rotavirus Vaccine

- Lyophilized vaccine reconstituted with CaCO₃ buffer
 - human G1P[8] strain
 - cross-protective of multiple strains
 - high efficacy and safety, no interference with OPV or other vaccines
 - 2-doses, given <24 weeks of age

- Current presentation:
 - mono-dose, 1 ml/dose
 - +2°C to +8°C, must not freeze
 - non-standard handling
 - large per-dose volume
 - VVM on UNICEF-supplied vaccine
 - WHO prequalified Jan 2007
Merck RotaTeq®
Pentavalent, reassortant, oral Rotavirus Vaccine

- Liquid vaccine, 5 human-bovine reassortant strains:
 - G serotypes - human G1, G2, G3 and G4; bovine G6
 - cross-protective of multiple strains
 - high efficacy and safety, no interference with OPV or other vaccines
 - 3-doses, given <32 weeks of age

- Current presentation:
 - mono-dose, 2 ml/dose
 - +2°C to +8°C storage
 - administered like OPV,
 - large per-dose volume
 - VVM to be developed
 - WHO prequalified: October 2008
Global introduction of Rotavirus vaccines in childhood immunization programme

- Global Recommendation in 2009
- 70 Countries globally
- Sudan in 2011
- 27 countries introduces in Africa
Why the need for New vaccines?

Efficacy of rotavirus vaccines by mortality stratum and country

<table>
<thead>
<tr>
<th>Mortality rate defined by WHO</th>
<th>RV vaccine efficacy estimates</th>
<th>Countries where studies were performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>50–64%</td>
<td>Ghana, Kenya, Malawi, Mali</td>
</tr>
<tr>
<td>INTERMEDIATE</td>
<td>46–72%</td>
<td>Bangladesh, South Africa</td>
</tr>
<tr>
<td></td>
<td>72–85%</td>
<td>Vietnam, countries in the Region of the Americas</td>
</tr>
<tr>
<td>LOW</td>
<td>85–100%</td>
<td>Countries in the Region of the Americas, Europe, Western Pacific</td>
</tr>
</tbody>
</table>

Vaccine Efficacy Lower in Developing Countries with Higher Rotavirus Mortality Rates
Challenges to RV vaccination

Hurdles to Immunization for a Live Oral Rotavirus Vaccine

Factors that lower viral titer
- Breast milk
- Stomach acid
- Maternal antibodies
- OPV

Factors that impair immune response
- Malnutrition - Zn, Vit A
- Interfering microbes- viruses and bacteria
- Other infections - HIV, malaria, TBC

Umesh Parashar, 2014
New Vaccine Concepts

- Human monovalent vaccines
- Animal reassortant vaccines
- Non replication rotavirus vaccines
The human monovalent rotavirus vaccines

RotaVac
RotaVin-M1
RV3
Indian Neonatal Strain 116E

- Naturally reassorted human-bovine rotavirus strain
- Human rotavirus with a bovine rotavirus VP4 gene
- Asymptomatic infection in neonates in Delhi - good immune responses observed in neonates
- Phase 1 and 2 studies completed in India showed robust immune response to the vaccine
- Phase 3 safety and efficacy demonstrated efficacy similar to other licensed vaccines
- Licensed as RotaVac™ by Bharat Biotech International, Ltd., India and introduced into the EPI in 2014
- Supported by the Indo-US Vaccine Action Program and PATH (with BMGF funding) and Dept of Biotechnology (DBT), India

Phase 3 efficacy study of ROTAVAC® completed in late 2013, which involved 6,799 infants enrolled across three sites in India.

The trial data showed the vaccine to have an excellent safety and efficacy profile.

ROTAVAC® significantly reduced severe rotavirus diarrhea by more than half—56% of children during the first year of life, with protection continuing into the second year of life.

Compares favorably with the efficacy of globally available rotavirus vaccines in low-resource countries. ROTAVAC® also showed impact against severe diarrhea of any cause.

Collaboration between CDC and national institute of vaccines and Biologicals, Vietnam since 1998

- 2 dose vaccine given 2 months apart at 6-12 weeks of age
- Safe and efficacious
- Seroconversion >75%

Development of Rotavin-M1

- Originated from stool of a child with acute gastroenteritis in Khanh Hoa in 2003
- “Attenuated” by serial passages (x40) in cell culture
- Tested for safety and immunogenicity in mice, rabbits and monkeys

Anh, DD: Vaccine 2012
Human Neonatal Strain (RV3)

- Naturally attenuated strain isolated in maternity units in Melbourne
- Infants followed up for 3 years
- No diarrhoeal symptoms in siblings aged 1-2 years
- Never identified in children with community acquired diarrhoea
- Protected against rotavirus disease in the cohort
- G3P[6] - both human rotavirus immunogens
- G3 epitopes cross-reactive with G1 and G9.
- P[6] epitopes appear adapted to neonatal gut and high maternal antibody titres

RV3-BB Vaccine Clinical Development

- Phase 1 trial completed in Melbourne (TGA)
 - Adults, toddlers, infants
 - No safety concerns
- Phase 2 trial completed in New Zealand for proof of principle of immunogenicity at higher titre
- Phase 2b study for immunogenicity and efficacy is ongoing in Indonesia
 - Immune responses with IPV and OPV
 - Neonatal immunization schedule and EPI schedule
The animal strain reassortant rotavirus vaccines
Construction of NIH bovine – human reassortant rotavirus vaccines

Clinical development of NIH bovine-human reassortant vaccine

- Bovine-human rotavirus reassortant strain (UK – G6P[7])

- Quadrivalent reassortant vaccine (with human rotavirus VP7 genes for G1-G4)
 - Safe and non-reactogenic in phase I trials
 - Satisfactory immunogenicity in phase II trials

- Immunogenicity trial in infants administered concomitantly with childhood vaccines
 - Safe and well tolerated after 3 doses at 10^5 ffu
 - Non-inhibitory to other routine childhood vaccine immune responses
 - 95% of infants developed serum neutralizing antibody responses

Clinical development of NIH bovine-human reassortant vaccine

- Quadrivalent vaccine (G1, G2, G3 and G4) compared to RotaShield® in infants in Finland

- Demonstrated safety and immunogenicity of Dyncorp produced quadrivalent vaccine (FRhL-2 cell line) in infants (2 months old)
 - Two doses – 1.7×10^6 total virus (frozen) with antacid.
 - RRV-TV associated with transient and generally low-grade fever in up to one third of vaccinees.
 - Bovine rotavirus based vaccine characteristically non-reactogenic

- Immunogenicity and Efficacy of BRV is similar to the licensed RotaShield®

Vesikari et al, J Infect Dis 2006; 194: 370-6
Bovine-human Rotavirus Reassortant Vaccine Manufacturers

- Licensed by Office of Technology, NIH, Bethesda to multiple manufacturers
 - Shantha Biotechnics, India (Phase 2 immunogenicity complete);
 - Butantan, Brazil (Phase 1 safety complete);
 - Wuhan Institute of Biologicals Products, China (pre-clinical)

- Serum Institute of India, Pune, India
 - Pentavalent vaccine construct (G1, G2, G3, G4, G9)
 - Completed Phase 2 immunogenicity study
 - Started Phase 3 safety and efficacy study in multiple sites in India in 2014
New Rotavirus Vaccines in Development

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Institute of India</td>
<td>Human-Bovine Reassortant, Pentavalent (G1-G4, G9)</td>
<td>Phase 3 ongoing</td>
</tr>
<tr>
<td>Shantha Biotechnics</td>
<td>Human-Bovine Reassortant Tetravalent (G1-4)</td>
<td>Phase 2 complete; Phase 3 proposed</td>
</tr>
<tr>
<td>Biofarma and MCRI</td>
<td>Human (G3P[6])</td>
<td>Phase 2b ongoing</td>
</tr>
<tr>
<td>Medica International Foundation</td>
<td>Rhesus-human rotavirus reassortant Tetravalent</td>
<td>Phase 2b complete</td>
</tr>
<tr>
<td>Butantan Institute</td>
<td>Human-Bovine Reassortant (G1-4,9) Pentavalent</td>
<td>Phase 2 ongoing</td>
</tr>
<tr>
<td>Wuhan Institute of Biological Products</td>
<td>Bovine Reassortant (G1-4,8,9) Hexavalent</td>
<td>Preclinical; Phase 1 in preparation</td>
</tr>
</tbody>
</table>
Status of Rotavirus Vaccine Development
Serum Institute – BRV-PV

Live, oral, lyophilized BRV vaccine
- (G 1, 2, 3, 4 & 9)
- Phase 3 efficacy study under way, expected completion March 2017
- EPI non-interference / lot consistency trial expected to begin early 2015

Liquid formulation under development
- Tox studies to be completed by October 2014
- Phase 1 targeted to begin Q2 2015; immuno bridging study planned

WHO PQ to be sought for both presentations

Live-attenuated Tetravalent Bovine-Human Reassortant Rotavirus vaccine

- G1, G2, G3, G4 strains
- Ready-to-administer liquid presentation
- Recently completed Phase I and II safety and immunology studies
- Results showed that all three dose levels tested were safe, well tolerated and displayed good immunogenicity (sero-conversion and GMTs) in Indian infants
- Proposed non-inferiority single-blind immunogenicity study with RotaTeq in multiple sites in India
- DCGI approvals pending
- WHO PQ support will be sought

Serum IgA anti-rotavirus antibody sero-response (four fold or more rise over baseline after each dose). Group A: Placebo, Group B: BRV-TV 105.0FFU, Group C: BRV-TV 105.8FFU, Group D: BRV-TV 106.4FFU, Group E: RotaTeq.
Rotashield: the Ghana Neonatal trials

- Double-blind, placebo-controlled trial of RRV-TV (Rotashield®)
- 2 doses given at 0-28 days and 30-59 days of age, with routine EPI vaccines, including oral polio vaccine (OPV), when possible
- No exclusions for HIV
- No restriction on breastfeeding
- Safety Follow up: 2 and 4 days post any vaccination and then weekly thereafter till 1 year old
- Primary efficacy period: 14 days following the second dose until end of study follow-up

<table>
<thead>
<tr>
<th>RVGE</th>
<th>Any Serotype (95% CI)</th>
<th>Serotypes in RRV-TV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe*</td>
<td>57.6% (<0, 83.6)</td>
<td>60.5% (<0., 87.5)</td>
</tr>
<tr>
<td>Any severity</td>
<td>60.7% (29.5, 78.1)</td>
<td>63.1% (24.6, 82.0)</td>
</tr>
</tbody>
</table>
Comparison of the Efficacy of RotaTeq, Rotarix, and RRV-TV Against Severe Rotavirus Gastroenteritis (≥11 Vesikari Scale) during first year of life

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Dosage (Ref.)</th>
<th>% Efficacy (95% CI)</th>
<th>Location(s)</th>
<th>Surveillance Period (>14 days after last dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RotaTeq¹</td>
<td>6, 10, 14 weeks (3 doses)</td>
<td>51.0 (12.8-73.3)</td>
<td>Bangladesh and Vietnam combined</td>
<td>Up to one year of age</td>
</tr>
<tr>
<td>RotaTeq²</td>
<td>6, 10, 14 weeks (3 doses)</td>
<td>64.2 (40.2-79.4)</td>
<td>Kenya, Ghana, and Mali combined</td>
<td>Up to one year of age</td>
</tr>
<tr>
<td>Rotarix³</td>
<td>10, 14 weeks or 6, 10, 14 weeks (2 or 3 doses)</td>
<td>61.2 (44.0-73.2)</td>
<td>South Africa and Malawi combined</td>
<td>Up to one year of age</td>
</tr>
<tr>
<td>RRV-TV</td>
<td>0-29 days, 30-59 days (2 doses)</td>
<td>60.5 (<0 - 87.5)</td>
<td>Ghana</td>
<td>Up to one year of age</td>
</tr>
</tbody>
</table>

¹Zaman et al; lancet 2010; 376:615-23 ; ²Armah et al; lancet 2010;376-606-14
³Madhi et al; NEJM;2 010,362:289-98
Novel approach of non-replicating rotavirus vaccine candidates

- Inactivated rotavirus particles
- Subunit vaccines – VP8* subunit; VP6 subunit
- Virus-like particles (VLPs)
Leading NRRV Candidate – P2-VP8* particle (NIH)

- Fusion protein of the P2 universal T-cell epitope of tetanus toxin and a subunit of the VP8
- Phase 1 safety study complete
- Phase 2 immunogenicity and age descending study ongoing in South Africa
Conclusions from Phase 1 Trial

- Vaccine safe and well tolerated
- Vaccine elicits a robust antibody response to several homologous P[8] strains of rotavirus
 - Modest response to a P[4] strain
 - Meager response to a P[6] strain
- Response rates lower in those with high levels of pre-existing antibody
- Performance of the vaccine in immunologically naïve subjects remains to be determined
Rotavirus vaccine pipeline

Research

Phase 1

Phase 2

Phase 3

Licensure

Market

BB
IL
E

Lanzhou

PolyVAC

34
Other Nationally Licensed Rotavirus Vaccines

<table>
<thead>
<tr>
<th>Manufacturer, Country</th>
<th>Product</th>
<th>Specifications</th>
<th>Date Licensed</th>
</tr>
</thead>
</table>